博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《机器学习实战》Logistic回归
阅读量:6221 次
发布时间:2019-06-21

本文共 8868 字,大约阅读时间需要 29 分钟。

 


 

注释:Ng的视频有完整的推到步骤,不过理论和实践还是有很大差别的,代码实现还得完成

 

1.Logistic回归理论

  ,Ng的推导很完美,看懂就可以了,没必要自己推导一遍,因为几天不用就忘记 了。

2.代码实现

  2.1全局梯度上升

    每次训练针对整体,依据整体去找最值。

    好处:容易过滤局部极值,找到真正的全局极值。

    坏处:整体数据太多,花费时间太久,而且新来的样本必须重新训练。

    推倒公式:见博文刚开始的链接,Ng大神的全部推导及证明!

1 def loadDataSet(): 2     dataMat  = [] 3     labelMat = [] 4     fr = open('testSet.txt') 5     for line in fr.readlines(): 6         lineArr = line.strip().split()#分割空格 7         #改变存储data:[[a,b],[c,d]]/ 8         #       labels:[1,0,0,1...] 9         dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])10         labelMat.append([int(lineArr[2])])11     return dataMat, labelMat12 def sigmoid(intX):13     return 1.0/(1.0+np.exp(-intX))14 #全局梯度上升法15 def gradAscent(dataMatIn,classLabels):16     dataMatrix = np.mat(dataMatIn)17     labelsMat = np.mat(classLabels)18     m, n = dataMatrix.shape19     alpha = 0.00120     maxCycle = 20021     weight = np.ones((n,1))#这里为了简单写,把b也当作一个w了22     for k in range(maxCycle):23         h = sigmoid(dataMatrix*weight)24         error = labelsMat - np.mat(h)25         weight = weight + alpha*dataMatrix.transpose()*error26     return weight

  2.1简单分类可视化

    利用matplotlib画出简单分类的决策边界

    注意:这里plot转化为list之后绘制的,看网上说可以直接用matrix,但是我运行出错。

1 def plotBestFit(weight): 2     dataMat, labelMat = loadDataSet() 3     dataArr = np.array(dataMat)#转化为数组 4     n = dataArr.shape[0] 5     xcode1=[];ycode1=[] 6     xcode2=[];ycode2=[] 7     for i in range(n): 8         if int(labelMat[i][0])==1: 9             xcode1.append(dataArr[i,1])10             ycode1.append(dataArr[i,2])11         else:12             xcode2.append(dataArr[i,1])13             ycode2.append(dataArr[i,2])14     fig = plt.figure("data_x_y")15     ax  = fig.add_subplot(111)16     ax.scatter(xcode1,ycode1,s=30,c='r',marker='s')17     ax.scatter(xcode2,ycode2,s=30,c='g')18     x = np.mat(np.arange(-3.0,3.0,0.1))19     y = (-weight[0]-weight[1]*x)/weight[2]20     ax.plot(x.tolist()[0],y.tolist()[0])21     plt.xlabel('X1')22     plt.ylabel('X2')23     plt.show()

  2.3局部随机梯度上升法及改进

    局部随机梯度:和全局相对,利用单个样本更新W,同时又是利用正太分布的规律去随机选择样本的次序。

    好处:‘局部’训练效率高,而且新的样本可以直接添加不用重新训练,‘随机’解决了样本规律性的波动,树上有图解。

    坏处:可能得到局部极值。

1 #局部梯度上升法-老版本 2 def stoGradAscent0(dataMatrix,classLabels): 3     m,n = dataMatrix.shape 4     alpha = 0.01 5     weights = np.ones(n)#最好别写0,因为0的拟合速度很慢 6     for i in range(m): 7         h = sigmoid(sum(dataMatrix[i]*weights)) 8         error = classLabels - h 9         weights = weights +alpha* error* dataMatrix[i]10     return weights11 #随机梯度上升法-新版本12 def stoGradAscent1(dataMatraix,classLabels,numIter=150):13     #alpha不断改变14     #选取的样本随机改变15     m,n = dataMatraix.shape16     weights = np.ones(n)17     for j in range(numIter):18         dataIndex = list(range(m))#样本19         for i in range(m):20             alpha = 4/(1.0+j+i) +0.01#随着迭代次数和样本的训练次数的增加而减小21             randIndex = int(np.random.uniform(0,len(dataIndex)))#随机样本下标22             h = sigmoid(sum(dataMatraix[randIndex]*weights))23             error = classLabels[randIndex] - h24             weights = weights +alpha*error*dataMatraix[randIndex]25             del(dataIndex[randIndex])#执行之后删除,避免重复执行26     return weights

  2.4实际应用

    和前面朴素贝叶斯都差不多,预处理数据-->>训练-->>测试

1 分类函数 2 def classifyVector(inX,weight): 3     prob = sigmoid(sum(inX*weight)) 4     if prob>0.5: return 1.0 5     return 0.0 6 def colicTest(): 7     frTrain = open('horseColicTraining.txt') 8     frtest  = open('horseColicTest.txt') 9     trainingSet   = []10     trainingLabel = []11     for line in frTrain.readlines():12         currLine = line.strip().split('\t')13         lineArr = []14         #最后一个是标签15         for i in range(len(currLine)-1):16             lineArr.append(float(currLine[i]))17         trainingSet.append(lineArr)18         trainingLabel.append(float(currLine[-1]))19     #改进之后的随机梯度下降法--->>>局部算法=在线学习20     trainWeight = stoGradAscent1(np.array(trainingSet),trainingLabel,500)21     errorCount = 0.022     numTestVec = 0.023     for line in frtest.readlines():24         numTestVec += 1.025         currLine =line.strip().split('\t')26         lineArr = []27         for i in range(21):28             lineArr.append(float(currLine[i]))29         if int(classifyVector(np.array(lineArr),trainWeight)) != int(currLine[21]):30             errorCount+=131     errorRate = (1.0*errorCount)/(1.0*numTestVec)32     print('the error Rate is : ',errorRate,'\n')33     return errorRate34 def multiTest():35     numTest = 10;errorSum = 0.036     for k in range(numTest):37         errorSum += colicTest()38     print('error Rate Average is : ',(errorSum/numTest))

  2.5总程序

1 import numpy as np  2 import matplotlib.pyplot as plt  3   4 def loadDataSet():  5     dataMat  = []  6     labelMat = []  7     fr = open('testSet.txt')  8     for line in fr.readlines():  9         lineArr = line.strip().split()#分割空格 10         #改变存储data:[[a,b],[c,d]]/ 11         #       labels:[1,0,0,1...] 12         dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) 13         labelMat.append([int(lineArr[2])]) 14     return dataMat, labelMat 15 def sigmoid(intX): 16     return 1.0/(1.0+np.exp(-intX)) 17 #全局梯度上升法 18 def gradAscent(dataMatIn,classLabels): 19     dataMatrix = np.mat(dataMatIn) 20     labelsMat = np.mat(classLabels) 21     m, n = dataMatrix.shape 22     alpha = 0.001 23     maxCycle = 200 24     weight = np.ones((n,1))#这里为了简单写,把b也当作一个w了 25     for k in range(maxCycle): 26         h = sigmoid(dataMatrix*weight) 27         error = labelsMat - np.mat(h) 28         weight = weight + alpha*dataMatrix.transpose()*error 29     return weight 30  31 def plotBestFit(weight): 32     dataMat, labelMat = loadDataSet() 33     dataArr = np.array(dataMat)#转化为数组 34     n = dataArr.shape[0] 35     xcode1=[];ycode1=[] 36     xcode2=[];ycode2=[] 37     for i in range(n): 38         if int(labelMat[i][0])==1: 39             xcode1.append(dataArr[i,1]) 40             ycode1.append(dataArr[i,2]) 41         else: 42             xcode2.append(dataArr[i,1]) 43             ycode2.append(dataArr[i,2]) 44     fig = plt.figure("data_x_y") 45     ax  = fig.add_subplot(111) 46     ax.scatter(xcode1,ycode1,s=30,c='r',marker='s') 47     ax.scatter(xcode2,ycode2,s=30,c='g') 48     x = np.mat(np.arange(-3.0,3.0,0.1)) 49     y = (-weight[0]-weight[1]*x)/weight[2] 50     ax.plot(x.tolist()[0],y.tolist()[0]) 51     plt.xlabel('X1') 52     plt.ylabel('X2') 53     plt.show() 54 #局部梯度上升法-老版本 55 def stoGradAscent0(dataMatrix,classLabels): 56     m,n = dataMatrix.shape 57     alpha = 0.01 58     weights = np.ones(n)#最好别写0,因为0的拟合速度很慢 59     for i in range(m): 60         h = sigmoid(sum(dataMatrix[i]*weights)) 61         error = classLabels - h 62         weights = weights +alpha* error* dataMatrix[i] 63     return weights 64 #随机梯度上升法-新版本 65 def stoGradAscent1(dataMatraix,classLabels,numIter=150): 66     #alpha不断改变 67     #选取的样本随机改变 68     m,n = dataMatraix.shape 69     weights = np.ones(n) 70     for j in range(numIter): 71         dataIndex = list(range(m))#样本 72         for i in range(m): 73             alpha = 4/(1.0+j+i) +0.01#随着迭代次数和样本的训练次数的增加而减小 74             randIndex = int(np.random.uniform(0,len(dataIndex)))#随机样本下标 75             h = sigmoid(sum(dataMatraix[randIndex]*weights)) 76             error = classLabels[randIndex] - h 77             weights = weights +alpha*error*dataMatraix[randIndex] 78             del(dataIndex[randIndex])#执行之后删除,避免重复执行 79     return weights 80 #分类函数 81 def classifyVector(inX,weight): 82     prob = sigmoid(sum(inX*weight)) 83     if prob>0.5: return 1.0 84     return 0.0 85 def colicTest(): 86     frTrain = open('horseColicTraining.txt') 87     frtest  = open('horseColicTest.txt') 88     trainingSet   = [] 89     trainingLabel = [] 90     for line in frTrain.readlines(): 91         currLine = line.strip().split('\t') 92         lineArr = [] 93         #最后一个是标签 94         for i in range(len(currLine)-1): 95             lineArr.append(float(currLine[i])) 96         trainingSet.append(lineArr) 97         trainingLabel.append(float(currLine[-1])) 98     #改进之后的随机梯度下降法--->>>局部算法=在线学习 99     trainWeight = stoGradAscent1(np.array(trainingSet),trainingLabel,500)100     errorCount = 0.0101     numTestVec = 0.0102     for line in frtest.readlines():103         numTestVec += 1.0104         currLine =line.strip().split('\t')105         lineArr = []106         for i in range(21):107             lineArr.append(float(currLine[i]))108         if int(classifyVector(np.array(lineArr),trainWeight)) != int(currLine[21]):109             errorCount+=1110     errorRate = (1.0*errorCount)/(1.0*numTestVec)111     print('the error Rate is : ',errorRate,'\n')112     return errorRate113 def multiTest():114     numTest = 10;errorSum = 0.0115     for k in range(numTest):116         errorSum += colicTest()117     print('error Rate Average is : ',(errorSum/numTest))

 

转载于:https://www.cnblogs.com/wjy-lulu/p/7967885.html

你可能感兴趣的文章
c编程应注意到的细节问题
查看>>
linux文件类型及权限
查看>>
深入浅出Vue 使用中的小技巧
查看>>
Metasploit 5.0释出!轻松对多主机渗透测试
查看>>
缓存伪共享问题以及解决方案缓存行填充
查看>>
linux的简单命令
查看>>
SpringMVC常见面试题总结【概念】
查看>>
zookeeper使用和原理探究(一)
查看>>
OSChina 周五乱弹 —— 为什么程序媛那么少?
查看>>
OSChina 周二乱弹 —— 我有垃圾,你有桶么
查看>>
前端那些事之工具涵数库--underscore
查看>>
shell script advanced
查看>>
ubuntu12.04 software-center 的一个BUG
查看>>
ORACLE双机系统日志清理脚本
查看>>
VM虚拟机:从小白一步一步安装linux centos6.5虚拟机
查看>>
Maven创建web工程报错
查看>>
[Android 之美] 那些你不知道的APK 瘦身,让你的APK更小
查看>>
Android Arcface 2.0人脸识别注册失败问题
查看>>
MySql ZIP 包 安装 的详细步骤以及可能的错误
查看>>
ROW_NUMBER() OVER函数的基本用法
查看>>